Компьютерная грамотность, помощь и ремонт

Все о пид регуляторах и регулировании. ТАУ для самых маленьких: пример реализации ПИД-регулятора в Unity3D

Всем привет. Рассмотрев в прошлой статье основу технологии построения веб-интерфейса, мы возьмем небольшую паузу с проектированием, и рассмотрим пару статей по ПИД–регулятору. Куда войдут основы автоматики, и на примере фрезерного станка на микроконтроллере, познакомимся с основными законами управления. А также рассчитаем основные коэффициенты законов для матмодели. В конце статьи выложен проект в Proteus на ATmega8 .

Но для начала «пробежимся» по основным понятиям, что б понимать о чем мы с Вами будем далее говорить. В проекте предполагается управлять двигателем, т.е. объектом. Что в свою очередь автоматика так и называет объект управления (ОУ). У него имеется три параметра:
1. Выходная величина y.
2. Входной задающий параметр u.
3. Входное возмущающее воздействие f.
На рисунке слева представлен общий вид ОУ с его параметрами. Справа наш пример представленный в протеусе в виде двигателя с энкодером, где входным задающим параметром является постоянное напряжение и в зависимости от его величины изменяется частота вращения двигателя. Выходным параметром является показания энкодера, а именно угол поворота (число импульсов за один оборот). Третий параметр — возмущающее воздействие — это воздействие со стороны внешней среды, которое нарушает правильное функционирование объекта, т.е. трение, нагрузка и т.д.

Для исключения последнего используется второй параметр, т.е. задающий. Техническое устройство, осуществляющее автоматическое управление называется управляющим устройством (УУ). А ОУ совместно с управляющим и задающим устройствами называют систему автоматического управления (САУ). Ниже структурная схема системы.

Здесь хочется сразу добавить, что ОУ может управляться по трем основным принципам :
1. Принцип разомкнутого управления – вырабатывается на основе заданного алгоритма и не контролируется другими факторами.
2. Принцип компенсации возмущений , где результат возмущения в виде корректива вносится в алгоритм управления.
3. Принцип управления по ошибке . Здесь коррективы вносятся в алгоритм управления по фактическому значению выходной величины.

Наш проект будет строится по последнему принципу управления – по ошибке. Ниже, слева структурная схема, а справа проект, где осуществляется управление по ошибке.

ЗУ — это у нас двигатель с энкодером (с левой стороны), с которого импульсы поступают в микроконтроллер. Где в свою очередь прописана матмодель ПИД-регулятора. Контроллер выступает в роли УУ. Далее ШИМ генерирует необходимый импульс и посылает его на вход второго двигателя с энкодером, который правее. (Мы с Вами уже рассматривали ) . Выход импульсов с которого, является выходной величиной и ошибкой в обратной связи y ос. Кнопки — это возмущающее воздействие, которыми мы произвольно добавляем импульсы ОУ. Где в свою очередь УУ должно быстро и плавно подрегулировать под угол поворота задающего устройства.

Далее САУ классифицируются по:
1. Алгоритму функционирования:
системы стабилизации — поддержание регулируемого параметра на заданном уровне;
программное управление – алгоритм задан в функции времени, где выходная величина изменяется во времени по заданному закону;
следящие системы — алгоритм функционирования заранее не известен, где регулируемая величина должна воспроизводить изменение некоторой внешней величины;
экстремальные системы — показатель качества или эффективности процесса может быть выражен в виде функции параметров системы, а сама функция имеет экстремум (максимум или минимум).
системы оптимального управления — процесс управления ведется таким образом, что некоторая характеристика процесса была бы оптимальной;
адаптивные системы – некоторые параметры ОУ и др. элементов системы могут изменяться.
Наш алгоритм это программное управление, где выходная величина будет результатом ПИД управления.
2. По виду дифференциальных уравнений , описываемых систему – линейные (статические характеристики всех элементов являются прямолинейными) и нелинейные (статическая характеристика является нелинейной).
3. По характеру сигналов в основных элементах - непрерывные и дискретные(в последних непрерывный входной сигнал преобразуется на выходе в последовательность импульсов).

Наш проект нелинейный и сигналы дискретные. И последнее, рассмотрим типовые законы управления, определяющие алгоритм управления в функции от ошибки управления. Под законом регулирования понимают алгоритм, в соответствии с которым управляющее устройство формирует воздействие, подаваемое на вход ОУ. Законы управления описываются передаточными функциями, которые являются одним из способов математического описания динамической системы. Вид передаточной функции управляющего устройства определяет закон управления. Различают пять основных законов управления: пропорциональный (П), интегральный (И), пропорционально –интегральный (ПИ), пропорционально-дифференциальный (ПД), пропорционально — интегрально – дифференциальный (ПИД).

Рассмотрим каждый закон в отдельности на примере устройства синхронизации. Итак, исходные данные:

Соберем пример в Proteus. Возьмем два движка с инкрементальными энкодерами, микроконтроллер, два счетчика импульсов, а также подключим осциллограф и ЖК индикатор для отображения рассогласования (ошибки). Рассмотрение датчиков угла поворота (энкодера) выходит за пределы статьи, единственное, что нам надо знать, они предназначены для преобразования угла поворота вращающегося объекта (вала) в электрические сигналы, позволяющие определить угол его поворота. Выше был представлен рисунок нашего проекта в Proteus. Ниже на рисунке пример настройки мотора с энкодером:

Где в свойствах мотора выставим:
— минимальную массу ротора EffectiveMass= 0,01;
— нагрузка ротора Load/MaxTorque % = 1, чтобы он по инерции не крутился;
— обороты ZeroLoad RPM=20;
— количество импульсов на оборот PulsesperRevolution=24.
Как видите в протеусе отдельного энкодера нет, только с двигателем. Кратко о его подключении. Один конец двигателя на землю, на второй напряжение от -12 или +12 В. И три вывода энкодера. Мы используем один как на рисунке выше. Приведенные параметры являются настроечными параметрами от которых будет зависеть динамика привода, т.е. его поведение.

П — регулятор. Одно из простых устройств и алгоритмов управления, в обратной связи, которое формирует управляющий сигнал. Выдает выходной сигнал u (t) , пропорциональный входному (ошибке регулирования) e (t) , с коэффициентом пропорциональности К , который вырабатывается пропорциональной частью П-регулятора в противодейтвие отклонению реглируемой величины от данного значения, в данный момент времени.

u (t)=K р *e (t) , где K р - коэффициент усиления регулятора.

Чем больше отклонение, тем больше выход именно по данному значению. Т.е. статическая ошибка равна отклонению регулируемой величины. Здесь присутствует вероятность, что система никогда не стабилизируется на заданном значении. Увеличение коэффициента усиления увеличивает разницу между входом и выходом, при этом уменьшается статическая ошибка. Но рост этого коэффициента может привести к автоколебаниям в системе, а дальнейшее его увеличение приведет к потере устойчивости.

Обычно на практике усилительные свойства П-регулятора характеризуют следующими величинами:
— предел пропорциональности d=1/K р - величина, обратная K р
— предел пропорциональности, выраженный в процентах D=d*100%=100%/K р . Показывает, на сколько процентов от своего максимального значения должен изменится входной сигнал, чтобы выходной изменился на 100%.

Автоколеба́ния - это незатухающие колебания в диссипативной (устойчивое состояние, возникающее в неравновесной среде при условии диссипации (рассеивания) энергии, которая поступает извне) динамической системе с нелинейной обратной связью, поддерживающиеся за счёт энергии постоянного, т. е. непериодического внешнего воздействия.
На рисунке ниже слева нормальный процесс П-регулирования, где видно, что линейность графика прямо пропорционально уменьшению ошибки. Справа, процесс автоколебаний в системе при большом коэффициенте.

П-регулятор находит свое применение в тех же процессах, где не требуется точного поддержания заданного значения, описанных ранее, то есть в контролируемом процессе будет присутствовать статическая ошибка. Возникает данная ошибка из-за того, что выходной сигнал слишком мал для оказания существенного воздействия на поддержание системы на заданном уровне. Вполне допускается, что регулятор выведет требуемое значение, но при возникновении возмущающих воздействий, регулятор не сможет вернуть заданное значение, пока рассогласование не станет достаточно велико, чтобы выходной сигнал смог оказать достаточное воздействие. Для нашего примера такой закон не подходит. Идем далее.

Что значит интегральное управление? А то, что устройство вырабатывает сигнал (u (t)) , пропорциональный интегралу от ошибки регулирования (e (t)) . Система при таком законе астатическая, т.е.возмущение происходит на том участке системы, который находится за интегрирующим звеном. Но при этом динамические свойства системы с И-законом обычно хуже чем у системы П-управления. Ниже представлен закон И-регулятора.

где K0 - коэффициент усиления регулятора. Скорость изменения выхода И-регулятора пропорциональна ошибке регулирования. Обычно на практике усилительные свойства И-регулятора характеризуют временем изодрома.

Время изодрома Т и =1/K 0 - величина, обратная K 0 . Также показывает за какое время выход регулятора изменится на 100% (регулирующий орган переместится из одного крайнего положения в другое) при скачкообразном изменении входного сигнала на 100%. Таким образом Т и характеризует быстродействие регулятора. С уменьшением T растет колебательность переходного процесса. При слишком малых значениях T система регулирования может перейти в неустойчивое состояние. Ниже на рисунке слева устойчивое состояние, справа — неустойчивое состояние.

В системе регулирования с И-регулятором обычно отсутствует статическая ошибка регулирования. Как правило И-регулятор не используется самостоятельно, а в составе ПИ- или ПИД- регуляторов.

Изодромное управление. Управляющее устройство вырабатывает суму двух сигналов — пропорционального ошибке и пропорционального интегралу от ошибки. Выходной сигнал ПИ-регулятора (u (t)) зависит и от ошибки регулирования (e (t)) , и от интеграла от этой ошибки.

K 1 - коэффициент усиления пропорциональной части,
K 0 - коэффициент усиления интегральной части

Так как ПИ-регулятор можно рассматривать как два регулятора, соединенные параллельно, то усилительные свойства ПИ-регулятора характеризуют два параметра:
1) предел пропорциональности d=1/K 1 - величина, обратная K 1
2) время изодрома Т и =1/K 0 — величина, обратная K 0 .

Динамические свойства системы с ПИ-регулятором лучше, чем с И-законом. Изодромная система в переходном режиме приближается к системе с пропорциональным управлением. А в установившемся режиме подобна системе с интегральным управлением. Чем больше коэффициент пропорциональности, тем меньше выходная мощность при одной и той же ошибке регулирования, чем больше постоянная времени интегрирования, тем медленнее накапливается интегральная составляющая. ПИ регулирование обеспечивает нулевую ошибку регулирования и нечувствительно к помехам измерительного канала. Ошибка регулирования (статическая) исключается за счет интегрального звена, которое образуется путем постоянного суммирования ε за определенный промежуток времени и формирования сигнала управления, пропорционального полученной величине.

Недостатком ПИ регулирования является медленная реакция на возмущающие воздействия. Для настройки ПИ регулятора следует сначала установить постоянную времени интегрирования равный нулю, а коэффициент пропорциональности — максимальным. Затем как при настройке пропорционального регулятора, уменьшением коэффициента пропорциональности нужно добиться появления в системе незатухающих колебаний. Близкое к оптимальному значение коэффициента пропорциональности будет в два раза больше того, при котором возникли колебания, а близкое к оптимальному значение постоянной времени интегрирования — на 20% меньше периода колебаний. Оптимальным является переходной процесс с 20% перерегулированием.

ПД-регулятор. Если нагрузка объекта изменяется часто и резко, и при этом объект имеет существенное запаздывание, то ПИ-регулятор дает неудовлетворительное качество регулирования. Тогда целесообразно в закон регулирования вводить дифференцирующую составляющую, т.е. воздействовать на регулирующий орган дополнительно по величине первой производной от изменения регулируемого параметра. Cигнал ПД-регулятора (u (t)) зависит от ошибки регулирования (e (t)) и от производной от этой ошибки (от скорости изменения ошибки).

ПД-регулятор характеризуют два параметра:

1. Предел пропорциональности d=1/K1 — величина обратная К1 .
2. Постоянная времени дифференцирования (время предварения) Тд=K2 . Это интервал времени между моментами достижения регулирующим органом одинакового положения при наличии дифференциальной составляющей и без нее. Параметр настройки дифференциальной составляющей. За счет дифференциальной составляющей упреждается перемещение регулирующего органа.

Дифференцирующее звено вычисляет скорость изменения ошибки, т.е. прогнозирует направление и величину изменения ошибки. Если она положительна, то ошибка растет и дифференцирующая часть вместе с пропорциональной увеличивает воздействие регулятора на объект. Если отрицательна — уменьшается воздействие на объект. Эта система регулирования имеет статическую ошибку регулирования, но быстродействие у нее выше, чем П- , И- , Пи-регуляторы. В начале переходного процесса ПД-регулятор имеет высокое усиление и, следовательно, точность, а в установившемся режиме он вырождается в П-регулятор со свойственной ему статической ошибкой. Если статическую ошибку скомпенсировать, как это делается в П-регуляторах, то возрастет ошибка в начале переходного процесса. Таким образом, ПД-регулятор по своим потребительским свойствам оказывается хуже П-регулятора, поэтому на практике он используется крайне редко. П-звено имеет положительное свойство — вносит в контур регулирования положительный фазовый сдвиг, что повышает запас устойчивости системы при малом времени предварения. Однако с увеличением этого времени растет усиление регулятора на высоких частотах, что приводит к режиму автоколебаний. Чем больше время дифференцирования, тем больше скачок в перемещении регулирующего органа.

Это сумма трех регуляторов П, И и Д (Пропорционально-интегрально-дифференцирующий). Выходной сигнал ПИД-регулятора (u (t)) зависит от ошибки регулирования (e (t)) , от интеграла от этой ошибки и от производной от этой ошибки.

Усилительные свойства характеризуют три параметра:

1. Предел пропорциональности d=1/K1 .
2. Время изодрома Ти=1/K0 .
3. Время предварения Тд=K2 .

Системы регулирования с ПИД-регуляторами сочетают в себе достоинства П- , И- , и ПД- регуляторов. В таких системах отсутствует статическая ошибка и они обладают высоким быстродействием.

Ниже выложен проект в Proteus на ATmega8. Где представлена выше описанная модель ПИД — регулятора.

(Скачали: 435 чел.)

В следующей статье рассмотрим расчет основных коэффициентов законов регулирования для нашего проекта, а именно синхронизации двигателей станка. Написание матмодели для микроконтроллера и существующие варианты. А также этапы проектирования: от замысла до платы. На этом мы сегодня и остановимся. Всем пока.

ПИД (или английская аббревиатура — PID) – это регулятор, осуществляющий пропорциональное, интегрирующее и дифференциальное управление. ПИД регуляторы находят широкое применение в современных системах точного контроля, таких как управление термосистемами и системами позиционирования. Использование ПИД регуляторов помогает уменьшить энергетические потери на настройку системы и обеспечивают более быстрый выход на требуемые параметры.

В общем случае ПИД регулятор получает значение определяющего параметра от объекта (Рис. 1) и воздействует на управление, состояние которого влияет на исходный параметр. Классическим примером применения ПИД регулятора являются управление термосистемой, будь это нагреватель или холодильная установка. Данный пример интересен тем, что нагрев или охлаждение процессы достаточно инертные и зачастую снижение температуры получается естественным путем из-за потерь

ПИД регуляторы применяются в системах, математическое описание которых трудоемко, или не может быть получено из-за случайного характера воздействия внешней среды или помех. Для термосистемы информация о состоянии объекта представляет собой значение температуры с датчика, а объект управления – нагреватель системы. Размерности графиков приведены условно, так как точная модель регулятора зависит от конкретных особенностей термосистемы.

Пропорциональное управление рассчитывается как произведение постоянного коэффициента К p на текущую ошибку отклонения. Если включить в обратную связь нагревателя термосистемы только пропорциональное управление, требуемую температуру вообще невозможно достичь (Рис. 2). Это связано с инерционностью системы, так как управление нагревателем должно осуществляется с учетом динамики повышения температуры объекта.

Интегральное регулирование реализуется умножениясуммы ошибок температурдо текущего момента временина интегральный коэффициент K I . Для термосистем интегрирующее управление вполне может поддерживать заданную температуру(Рис. 3). Такое управление компенсирует запаздывание нагревание объекта и позволяет приблизиться к требуемому значению с большей или меньшей точностью. Для систем с меньшей инерционностью применения только интегрального управления неприменимо, так как запаздывание процесса накопления ошибки приведет к «вылетанию» регулируемого параметра и появлению колебаний.

С применением дифференциального управления система получает возможность компенсировать возможную будущую ошибку параметра. Расчет дифференциальной составляющей численно выглядит как разность между текущим и предыдущим значением параметра, умноженную на коэффициент регулирования K D . Так как используется измерения, выполненные в небольшом интервале времени, ошибки и внешнее воздействие сильно влияет на процесс регулирования. Дифференциальное управление в чистом виде трудно реализуется для большинства систем из-за указанных факторов.

В сумме, три компоненты ПИД регулятора обеспечивает получение эффективного результата в коротком промежутке времени (Рис. 4).

На практике лучшие результаты достигаются подбором констант для каждого компонента регулирования. Также находят применения саморегулирующие ПИД контроллеры, для которых коэффициенты рассчитываются программным путем внутри системы.

Регулятор - устройство, которое следит за работой объекта управления и вырабатывает для него управляющие(регулирующие) сигналы.

Регуляторы могут быть выполнены в виде отдельного устройства или в виде прикладного пакета в основной программе управляющего устройства.

Аппаратные регуляторыможно разделить:

1.по использованию для работы внешней энергии:

регуляторы прямого действия, не используют внешнюю энергию. Работают за счёт энергии развиваемой датчиком, просты по конструкции, не дороги, но имеют не высокую точность. Используют в простейших системах регулирования.

регуляторы не прямого действия,используют внешнюю энергию для своей работы-это основной вид регуляторов.

2.по виду используемой внешней энергии:

  • электрические;
  • пневматические;
  • гидравлические;
  • комбинированные.

3.по виду регулируемого параметра: регуляторы температуры, давления, уровня, расхода и т. д.

4.по закону регулирования, т.е. по изменению регулирующего воздействия во времени при изменении регулируемого параметра(по виду переходной характеристике регулятора). Эти регуляторы могут быть аппаратного типа(аналоговые) и дигитальные, в виде программного пакета.

Различают следующие виды регулирований:

  • P (П ) - означает « пропорциональный »
  • I (И ) – « интегральный »
  • D (Д ) – « дифференциальный »
  • PI (ПИ ) – « пропорциональный и интегральный »
  • PD (ПД ) – « пропорциональный и дифференциальный »
  • PID (ПИД ) – « пропорциональный, интегральный и дифференциальный »

Свойства и типы регуляторов

1. P-регулятор , пропорциональный регулятор.

Передаточная функция P-регулятора: Gp(s) = Kp. Pегулятор вырабатывает управляющее воздействие на объект пропорционально величине ошибки (чем больше ошибка e, тем больше управляющее воздействие Y= Kp*e).

2. I-регулятор , интегрирующий регулятор.

Передаточная функция I-регулятора: Gi(s) = 1/Ti*s. Управляющее воздействие пропорционально интегралу от ошибки е:

3. D -регулятор , дифференцирующий регулятор.
Передаточная функция
D -регулятора: G d ( s ) = T d * s . D регулятор создаёт управляющее воздействие только при изменении регулируемой величины: Y = T d * de / dt .

У P -регулятора , его называют также статическим,изменение положения РО пропорционально отклонению регулируемого параметра «е » от его заданного значения X 0 .


Преимущества Р-регулятора – его быстродействие (небольшое время регулирования tp ) и высокая устойчивость процесса регулирования.


Недостаток – наличие статической ошибки δ Х,т.е. после окончания процесса регулирования(за время регулирования t p) параметр не возвращается точно к заданному значению, а отличается от заданного на δ Х,что снижает точность регулирования. С увеличением коэффициента усиления Кр, величина δ Хуменьшается, но АСР может потерять устойчивость. При Кр = Кр кр в системе возникают не затухающие колебания с постоянной амплитудой, а при ещё большем Кр, с возрастающей амплитудой. Рис. 93

1 – регулируемый процесс с P регулятором при K p < K p .кр
2 – Регулируемый процесс при
K p = K р.кр

T кр – период не затухающих колебаний при K p = K р.кр

t р – время регулирования для устойчивого процесса

X 0 – начальное значение регулируемого параметра

δ Х – статическая ошибка

У I -регулятора , его называют также a статическим,изменение положения РО пропорционально интегралу от отклонения «е » регулируемого параметра от его заданного значения X 0 . Регулирующий орган будет перемещаться до тех пор, пока параметр не достигнет точно заданного значения, т.е. у него нет статической ошибки δ Х=0. Это его достоинство, но недостатком является его плохая устойчивость, большое время регулирования. Его можно применять на инерционных объектах с самовыравниванием.

У D –регулятора , регулирующее воздействие пропорционально скорости отклонения параметра от задания т.е. производной от отклонения «е ». На рисунке 94 при ступенчатом изменении U(t ), возникает сигнал ошибки е , которыйбудет уменьшаться в процессе регулирования t , до тех пор, пока параметр не достигнет нового значения U(t).t 0 - начало отклонения параметра, t 1- момент срабатывания регулятора без сигнала по производной, «Δ» - зона нечувствитвльности регулятора.

Скорость отклонения в начальный момент большая и поэтому сигнал по скорости будет большим , регулятор сразу начнёт действовать в момент t1 ,ещё до заметного«Δ» отклонения параметра и параметр будет быстрее установлен к заданию U(t) .

Таким образом, этот регулятор имеет повышенное быстродействие – это его достоинство. Недостаток – не стабилен в работе, поэтом отдельно не используется. Но этот принцип используют для повышения качества регулирования PD и PID регуляторов.

Комбинируя простейшие P , I , D , регуляторы, получают PI , PD , PID регуляторы. На практике в основном применяют Р , PI , PID регуляторы

PI - регулятор, комбинация Р и I регуляторов. Имеет достоинства обоих. От Р – хорошая устойчивость, от I δ Х=0.

PD - регулятор, комбинация Р и D регуляторов. Имеет достоинства обоих. От Р – хорошая устойчивостьи, от D повышенное быстродействие, но сохраняется статическая ошибка δ Х, как у Р регулятора.

PID - регулятор, комбинация Р, I и D регуляторов. Имеет достоинства троих.От Р – хорошая устойчивостьи, от I – отсутствие статической ошибки δ Х=0, от D повышенное быстродействие.

PID - регулятор по своим возможностям наиболее универсален. В настоящее время в основном применяются электронные и цифровые PID –регуляторы, на основе которого можно осуществлять различные законы регулирования.

Структурная схема PID регулятора

На Рис.95показана структурная схема PID регулятора

Рис. 95 Структурная схема PID регулятора

K p – коэффициент усиления регулятора

T i – постоянная интегрирования

T d – постоянная дифференцирования

Это настроечные параметры регуляторов

Переходные характеристики регуляторов показаны на Рис.96. Для P, I и D регуляторов они аналогичны характеристикам соответствующих типовых звеньев. Для остальных регуляторов, характеристики получают сложением характеристик P, I, и D регуляторов.

Переходные характеристики показывают как изменяется регулирующее воздействие регулятора Y во времени при отклонении регулируемого параметра X от задания т.е. при появлении сигнала ошибки «е».

При отклонении, уменьшении температуры в объекте (X) Р регулятора , регулирующий клапан приоткроется (Y) пропорционально отклонению температуры и остановится. Подача тепла увеличится и температура , быстро восстановится, но не точно, возникнет статическая ошибка δ Х.

У PID регулятора, за счёт Р и D составляющих, клапан сначала сильно откроется, обеспечивая быструю подачу тепла, но затем, чтобы не возникло перегрева, начнёт прикрываться, обеспечивая подачу нужного тепла в объект. Затем вступает в действие I составляющая, которая приоткрывает клапан до тех пор, пока не будетустранена статическая ошибка δ Х. Таким образом D составляющая увеличивает быстродействие регулятора, а I составляющая убирает статическую ошибку δ Х.

Контрольные вопросы

1.Если у Р регулятора Кр увеличить, то как изменится δ Х?

2.Что даёт I составляющая у регулятора?

3.На какое свойство и как влияет D составляющая у регулятора?

4.Какой регулятор по качеству самый худший и самый лучший.?


Электрические схемы регуляторов

На Рис. 97 показаны возможные варианты реализации регуляторов на операционных усилителях. Р регулятор реализован на DA1 .

Коэффициент усиления Р составляющей Кр = Rp/ R1 . В схеме ,PID регулятора на DA1 выполнен повторитель Р составляющей т.к. К = R/R=1 , а функции усилителя выполняет DA 4, котораяодновременно являетсясравнивающим устройством , котор oe сравнивает сигнал от задатчика +U с сигналом от датчика - Ux. Их разность е= U - Ux подаётся на вход DA . Знак е зависит от направления измененияпараметра. Настроечные параметры для I части Т i = Ri С i , и для D части Td=RdCd. На DA5 Выполнен сумматор, который суммирует все составляющие и на выходе получаем сигнал, изменяющийся по PID закону.

P регулятор

I регулятор

D регулятор

PID регулятор

Рис. 97Электрические схемы P, I, D, и PID регуляторов

Закон регулирования электронного Т i, Т d.

1 – без регулятора

2 – I регулятор

3 – P регулятор

4 – PI регулятор

5 – PD регулятор

6 – PID регулятор

X 0 - начальное значение регулируемого параметра

δ X – статическая ошибка

Дифференциальный пропорционально-интегральный регулятор – устройство, которое устанавливают в автоматизированных системах для поддержания заданного параметра, способного к изменениям.

На первый взгляд все запутанно, но можно объяснить ПИД регулирование и для чайников, т.е. людей, не совсем знакомых с электронными системами и приборами.

Что такое ПИД регулятор?

ПИД регулятор – прибор, встроенный в управляющий контур, с обязательной обратной связью. Он предназначен для поддержания установленных уровней задаваемых величин, например, температуры воздуха.

Устройство подает управляющий или выходной сигнал на устройство регулирования, на основании полученных данных от датчиков или сенсоров. Контроллеры обладают высокими показателями точности переходных процессов и качеством выполнения поставленной задачи.

Три коэффициента ПИД регулятора и принцип работы

Работа ПИД-регулятора заключается в подаче выходного сигнала о силе мощности, необходимой для поддержания регулируемого параметра на заданном уровне. Для вычисления показателя используют сложную математическую формулу, в составе которой есть 3 коэффициента – пропорциональный, интегральный, дифференциальный.

Возьмем в качестве объекта регулирования ёмкость с водой, в которой необходимо поддерживать температуру на заданном уровне с помощью регулирования степени открытия клапана с паром.

Пропорциональная составляющая появляется в момент рассогласования с вводными данными. Простыми словами это звучит так – берется разница между фактической температурой и желаемой, умножается на настраиваемый коэффициент и получается выходной сигнал, который должен подаваться на клапан. Т.е. как только градусы упали, запускается процесс нагрева, поднялись выше желаемой отметки – происходит выключение или даже охлаждение.

Дальше вступает интегральная составляющая, которая предназначена для того, чтобы компенсировать воздействие окружающей среды или других возмущающих воздействий на поддержание нашей температуры на заданном уровне. Поскольку всегда присутствуют дополнительные факторы, влияющие на управляемые приборы, в момент поступления данных для вычисления пропорциональной составляющей, цифра уже меняется. И чем больше внешнее воздействие, тем сильнее происходят колебания показателя. Происходят скачки подаваемой мощности.

Интегральная составляющая пытается на основе прошлых значений температуры, вернуть её значение, если оно поменялось. Подробнее процесс описан в видео ниже.

Интеграл используется для исключения ошибок путем расчета статической погрешности. Главное в этом процессе – подобрать правильный коэффициент, иначе ошибка (рассогласование) будет влиять и на интегральную составляющую.

Третий компонент ПИД – дифференцирующий. Он предназначен для компенсации влияния задержек, возникающих между воздействием на систему и обратной реакцией. Пропорциональный регулятор подает мощность до тех пор, пока температура не достигнет нужной отметки, но при прохождении информации к прибору, особенно при больших значениях, ошибки всегда возникают. Это может привести к перегреву. Дифференциал прогнозирует отклонения, вызванные задержками или воздействием внешней среды, и снижает подаваемую мощность заранее.

Настройка ПИД регулятора

Настройка ПИД-регулятора осуществляется 2 методами:

  1. Синтез подразумевает вычисление параметров на основании модели системы. Такая настройка получается точной, но требует глубоких познаний теории автоматического управления. Она подвластна только инженерам и ученым. Так как необходимо снимать расходные характеристики и производить кучу расчетов.
  2. Ручной способ основывается на методе проб и ошибок. Для этого за основу берутся данные уже готовой системы, вносятся некоторые коррективы в один или несколько коэффициентов регулятора. После включения и наблюдений за конечным результатом проводится изменение параметров в нужном направлении. И так до тех пор, пока не будет достигнут нужный уровень работоспособности.

Теоретический метод анализа и настройки на практике применяются крайне редко, что связано с незнанием характеристик объекта управления и кучей возможных возмущающих воздействий. Более распространены экспериментальные методы на основе наблюдения за системой.

Современные автоматизированные процессы реализуются как специализированные модули под управлением программ для настройки коэффициентов регулятора.

Назначение ПИД регулятора

ПИД регулятор предназначен для поддержания на требуемом уровне некой величины – температуры, давления, уровня в резервуаре, расхода в трубопроводе, концентрации чего-либо и т.д., изменением управляющего воздействия на исполнительные механизмы, такие как автоматические регулирующие клапана, используя для этого пропорциональную, интегрирующую, дифференцирующую величины для своей настройки.

Целью использования является получение точного управляющего сигнала, который способен контролировать большие производства и даже реакторы электростанций.

Пример схемы регулирования температуры

Часто ПИД регуляторы используются при регулировке температуры, давайте на простом примере подогрева воды в ёмкости рассмотрим данный автоматический процесс.

В емкости налита жидкость, которую нужно подогреть до нужной температуры и поддерживать её на заданном уровне. Внутри бака установлен датчик измерения температуры – или и напрямую связан с ПИД-регулятором.

Для подогрева жидкости будем подавать пар, как показано ниже на рисунке, с клапаном автоматического регулирования. Сам клапан получает сигнал от регулятора. Оператор вводит значение температурной уставки в ПИД-регуляторе, которую необходимо поддерживать в ёмкости.

Если настройки коэффициентов регулятора неверны, будут происходить скачки температуры воды, при этом клапан будет то полностью открыт, то полностью закрыт. В этом случае необходимо рассчитать коэффициенты ПИД регулятора и ввести их заново. Если все сделано правильно, через небольшой промежуток времени система выровняет процесс и температура в ёмкости будет поддерживаться на заданной отметке, при этом степень открытия регулирующего клапана будет находиться в среднем положении.

Не знаю имеется ли в этом смысл но вот:

Закончил специальность АТП - автоматизирование технологических процессов, расчет регуляторов является большей частью для моей специальности.

Выходная точность зависит от 2 компонентов - качества измерительной техники и качества управляющей техники.

Измерительная составляющая.

Термистор EPCOS NTC G560 100K - такой стоит у меня в принтере.

Имеет класc точности (1), при разбросе измеряемых температур 355 имеет погрешность в 3,55 градуса.

Номинальное сопротивление имеет 100 ом - это сопротивление при 23.5 градусах, замеряется скорее всего ток (так как плата имеет источник напряжение на входовыходах), в среднем типовые амперметры имеют класс точности 1,5 - это 200мА и 3мА погрешности (1 - 1,5 градуса).

В сумме имеем погрешность в 5 градусов Цельсия.

Управляющий механизм.

Немного полиграфии:

Пропорционально-интегро-дифференцирующий (ПИД) регулятор - устройство в управляющем контуре с обратной связью. Используется в системах автоматического управления для формирования управляющего сигнала с целью получения необходимых точности и качества переходного процесса. ПИД-регулятор формирует управляющий сигнал, являющийся суммой трёх слагаемых, первое из которых пропорционально разности входного сигнала и сигнала обратной связи (сигнал рассогласования), второе - интеграл сигнала рассогласования, третье - производная сигнала рассогласования.

И по делу:

Пропорциональная составляющая в логическом смысле нас не интересует.

Интегральная составляющая нужна для устранения статической ошибки (без нее регулируемая величина может иметь фиксированное отклонение, что-то вроде +5 градусов на все время регулирования).

Дифференциальная составляющая - это достаточно забавный способ регулирования. Для расчета значения в момент времени Т, она использует значение величины в момент времени Т+1. С математической точки зрения проблем нет, но в реальной жизни будущее значение нам не известно, и в реальности дифференциальная составляющая идет с задержкой по времени. Поясняю в момент времени Т мы исполняем расчетное изменения для момента Т-1. Дифференциальная составляющая собственно и регулирует.

Это был небольшой вводный курс в ТАУ.

Есть множество вариантов расчетов ПИД регуляторов, чаще всего используют метод Зиглера, есть уже готовые калькуляторы на матлабе и маткаде.

Если бы мы имели большую вычислительную емкость, на нашей плате, можно было бы использовать опытную схему регулирования (гигантские таблицы с входными изменениями и ответной регулировкой на них). Самый оптимум так как там можно задать воздействия куллера.

Подведу итог: Погрешность измерительных приборов и датчиков сводит на нет точность настройки ПИД регулятора, Если вы закажете высокоточные датчики сразу с преобразованием в hart протокол, rs232 или какой либо еще, и сможете настроить его на своей плате, у вас появится смысл точной (до 0,02) настройки ПИД. Самый легкий способ - пойти в вуз в котором преподают ТАУ (нефтяные, производственные направления) и заплатить преподавателю за расчет с настройкой (не обращайтесь к студентам они все под ответ подгоняют - ТАУ никогда не сходится).

Наиболее удачным вариантом для стабилизации температуры - это материал сопла с высокой теплоемкостью (будет долго нагревается но и колебаться температура будет меньше). Из опыта могу предложить изолировать сопло от ветра(хоть тем же каптоновым скотчем слоев на 20).

Надеюсь я ответил на большинство вопросов по этой теме.

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!