Компьютерная грамотность, помощь и ремонт

Внешняя долговременная память. Оперативная и долговременная память методическая разработка по информатике и икт (8 класс) на тему

Одним из основных элементов компьютера, позволяющим ему нормально функционировать, является память.

Внутренняя память компьютера – это место хранения информации, с которой он работает. Внутренняя память компьютера является временным рабочим пространством; в отличие от нее внешняя память предназначена для долговременного хранения информации. Информация во внутренней памяти не сохраняется при выключении питания.

Память компьютера организована в виде множества ячеек, в которых могут храниться значения; каждая ячейка обозначается адресом. Размеры этих ячеек и, собственно, типы значений, которые могут в них храниться, отличаются у разных компьютеров. Некоторые старые компьютеры имели очень большой размер ячейки, иногда до 64 бит в каждой ячейке. Эти большие ячейки назывались "словами".

Оперативная память

Оперативная память, или оперативка – это один из главных элементов компьютера. «Оперативная» память потому, что очень быстро работает и позволяет процессору практически без какого-либо заметного ожидания читать информацию из памяти. Содержащиеся в оперативной памяти данные сохранены и доступны только тогда, когда компьютер включен. При выключении компьютера содержимое стирается из оперативной памяти, поэтому перед выключением компа все данные нужно сохранить. От объема оперативной памяти (кстати, еще ее называют ОЗУ – оперативное запоминающее устройство) зависит количество задач, которые одновременно может выполнять компьютер.

Устройства оперативной памяти иногда называют запоминающими устройствами с произвольным доступом. Это означает, что обращение к данным, хранящимся в оперативной памяти, не зависит от порядка их расположения в ней. Когда говорят о памяти компьютера, обычно подразумевают оперативную память, прежде всего микросхемы памяти или модули, в которых хранятся активные программы и данные, используемые процессором.

За несколько лет определение RAM (Random Access Memory) превратилось из обычной аббревиатуры в термин, обозначающий основное рабочее пространство памяти, создаваемое микросхемами динамической оперативной памяти (Dynamic RAM – DRAM) и используемое процессором для выполнения программ. Одним из свойств микросхем DRAM (и, следовательно, оперативной памяти в целом) является динамическое хранение данных, что означает, во-первых, возможность многократной записи информации в оперативную память, а во-вторых, необходимость постоянного обновления данных (т.е., в сущности, их перезапись) примерно каждые 15 мс (миллисекунд). Также существует так называемая статическая оперативная память (Static RAM – SRAM), не требующая постоянного обновления данных.

Термин "оперативная память" часто обозначает не только микросхемы, которые составляют устройства памяти в системе, но включает и такие понятия, как логическое отображение и размещение. Логическое отображение – это способ представления адресов памяти на фактически установленных микросхемах. Размещение – это расположение информации (данных и команд) определенного типа

В большинстве систем оперативной памяти современных ПК используется динамическая оперативная память (Dynamic RAM – DRAM). Основное преимущество памяти этого типа состоит в том, что ее ячейки упакованы очень плотно, т.е. в небольшую микросхему можно упаковать много битов, а значит, на их основе можно построить память большой емкости.

Ячейки памяти в микросхеме DRAM – это крошечные конденсаторы, которые удерживают заряды. Именно так (наличием или отсутствием зарядов) и кодируются биты. Проблемы, связанные с памятью этого типа, вызваны тем, что она динамическая, т.е. должна постоянно регенерироваться, так как в противном случае электрические заряды в конденсаторах памяти будут “стекать” и данные будут потеряны. Регенерация происходит, когда контроллер памяти системы берет крошечный перерыв и обращается ко всем строкам данных в микросхемах памяти. Большинство систем имеют контроллер памяти (обычно встраиваемый в набор микросхем системной платы), который настроен на соответствующую промышленным стандартам частоту регенерации, равную, например, 15 мкс. Ко всем строкам данных обращение осуществляется по прохождении 128 специальных циклов регенерации. Это означает, что каждые 1,92 мс (128x15 мкс) прочитываются все строки в памяти для обеспечения регенерации данных.

Регенерация памяти, к сожалению, отнимает время у процессора: каждый цикл регенерации по длительности занимает несколько циклов центрального процессора. В старых компьютерах циклы регенерации могли занимать до 10% (или больше) процессорного времени, но в современных системах, работающих на частотах, равных сотням мегагерц, расходы на регенерацию составляют 1% (или меньше) процессорного времени. Некоторые системы позволяют изменить параметры регенерации с помощью программы установки параметров CMOS, но увеличение времени между циклами регенерации может привести к тому, что в некоторых ячейках памяти заряд “стечет”, а это вызовет сбои памяти. В большинстве случаев надежнее придерживаться рекомендуемой или заданной по умолчанию частоты регенерации. Поскольку затраты на регенерацию в современных компьютерах составляют менее 1%, изменение частоты регенерации оказывает незначительное влияние на характеристики компьютера. Одним из наиболее приемлемых вариантов является использование для синхронизации памяти значений по умолчанию или автоматических настроек, заданных с помощью Setup BIOS. Большинство современных систем не позволяют изменять заданную синхронизацию памяти, постоянно используя автоматически установленные параметры. При автоматической установке системная плата считывает параметры синхронизации из системы определения последовательности в ПЗУ (serial presence detect – SPD) и устанавливает частоту периодической подачи импульсов в соответствии с полученными данными.

В устройствах DRAM для хранения одного бита используется только один транзистор и пара конденсаторов, поэтому они более вместительны, чем микросхемы других типов памяти. В настоящее время имеются микросхемы динамической оперативной памяти емкостью 16 Гбайт и больше. Это означает, что подобные микросхемы содержат миллиарды транзисторов. В микросхеме памяти все транзисторы и конденсаторы размещаются последователь но, обычно в узлах квадратной решетки, в виде очень простых, периодически повторяющихся структур.

Транзистор для каждого одноразрядного регистра DRAM используется для чтения состояния смежного конденсатора. Если конденсатор заряжен, в ячейке записана 1; если заряда нет – записан 0. Заряды в крошечных конденсаторах все время стекают, вот почему память должна постоянно регенерироваться. Даже мгновенное прерывание подачи питания или какой-нибудь сбой в циклах регенерации приведет к потере заряда в ячейке DRAM, а следовательно, и к потере данных. В работающей системе подобное приводит к появлению “синего” экрана, глобальным отказам системы защиты, повреждению файлов или к полному отказу системы.

Динамическая оперативная память используется в персональных компьютерах; поскольку она недорогая, микросхемы могут быть плотно упакованы, а это означает, что запоминающее устройство большой емкости может занимать небольшое пространство. К сожалению, память этого типа не отличается высоким быстродействием, обычно она намного “медленнее” процессора. Поэтому существует множество различных типов организации DRAM, позволяющих улучшить эту характеристику

Кэш (англ. cache) или сверхоперативная память – очень быстрое ЗУ небольшого объёма, которое используется при обмене данными между микропроцессором и оперативной памятью для компенсации разницы в скорости обработки информации.

Кэш-памятью управляет специальное устройство – контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их в кэш-память. При этом возможны как "попадания", так и "промахи". В случае попадания, то есть, если в кэш подкачаны нужные данные, извлечение их из памяти происходит без задержки. Если же требуемая информация в кэше отсутствует, то процессор считывает её непосредственно из оперативной памяти. Соотношение числа попаданий и промахов определяет эффективность кэширования.

Кэш-память реализуется на микросхемах статической памяти SRAM (Static RAM), более быстродействующих, дорогих и малоёмких, чем DRAM. Современные микропроцессоры имеют встроенную кэш-память, так называемый кэш первого уровня размером до 384 Кбайт. Кроме того, на системной плате компьютера может быть установлен кэш второго уровня ёмкостью до 12 Мб.

Память типа ROM (ПЗУ)

В памяти типа ROM (Read Only Memory) или ПЗУ (постоянное запоминающее устройство), данные можно только хранить, изменять их нельзя. Именно поэтому такая память используется только для чтения данных. ROM также часто называется энергонезависимой памятью, потому что любые данные, записанные в нее, сохраняются при выключении питания. Поэтому в ROM помещаются команды запуска ПК, т.е. программное обеспечение, которое загружает систему.

ROM и оперативная память – не противоположные понятия. Часть адресного пространства оперативной памяти отводится хранения программного обеспечения, которое позволяет загрузить операционную систему.

Перепрограммируемая постоянная память (Flash Memory) – энергонезависимая память, допускающая многократную перезапись своего содержимого с дискеты.

В настоящее время в большинстве систем используется одна из форм Flash-памяти, которая называется электрически стираемой программируемой постоянной памятью (Electrically Erasable Programmable Readonly Memory – EEPROM). Flash-память является по-настоящему энергонезависимой и перезаписываемой, она позволяет пользователям легко модифицировать ROM, программно-аппаратные средства системных плат и других компонентов (таких, как видеоадаптеры, платы SCSI, периферийные устройства и т.п.).

Важнейшая микросхема постоянной или Flash-памяти – модуль BIOS. Роль BIOS двоякая: с одной стороны это неотъемлемый элемент аппаратуры, а с другой стороны – важный модуль любой операционной системы.

BIOS (Basic Input/Output System – базовая система ввода-вывода) – совокупность программ, предназначенных для автоматического тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память.

Основной код BIOS содержится в микросхеме ROM на системной плате, но на платах адаптеров также имеются аналогичные микросхемы. Они содержат вспомогательные подпрограммы BIOS и драйверы, необходимые для конкретной платы, особенно для тех плат, которые должны быть активизированы на раннем этапе начальной загрузки, например видеоадаптер. Платы, не нуждающиеся в драйверах на раннем этапе начальной загрузки, обычно не имеют ROM, потому что их драйверы могут быть загружены с жесткого диска позже – в процессе начальной загрузки.

Дни старого доброго BIOS сочтены. UEFI (Unified Extensible Firmware Interface) представляет собой более мощную версию, которая лучше соответствует требованиям современного разнообразного "железа". По своей сути, UEFI является интерфейсом, который отвечает за предзагрузочное окружение операционной системы. Первую реализацию UEFI – EFI представила компания Intel в 2003 году.

CMOS RAM – это память с невысоким быстродействием и минимальным энергопотреблением от батарейки. Используется для хранения информации о конфигурации и составе оборудования компьютера, а также о режимах его работы.

Внешняя (долговременная) память

Основной функцией внешней памяти компьютера является способность долговременно хранить большой объем информации (программы, документы, аудио- и видеоклипы и пр.). Устройство, которое обеспечивает запись/считывание информации, называется накопителем , или дисководом , а хранится информация на носителях (например, дискетах).

Магнитный принцип записи и считывания информации. В накопителях на гибких магнитных дисках (НГМД) и накопителях на жестких магнитных дисках (НЖМД), или винчестерах, в основу записи информации положено намагничивание ферромагнетиков в магнитном поле, хранение информации основывается на сохранении намагниченности, а считывание информации базируется на явлении электромагнитной индукции.

В процессе записи информации на гибкие и жесткие магнитные диски головка дисковода с сердечником из магнито-мягкого материала (малая остаточная намагниченность) перемещается вдоль магнитного слоя магнитожесткого носителя (большая остаточная намагниченность). На магнитную головку поступают последовательности электрических импульсов (последовательности логических единиц и нулей), которые создают в головке магнитное поле. В результате последовательно намагничиваются (логическая единица) или не намагничиваются (логический нуль) элементы поверхности носителя.

В отсутствие сильных магнитных полей и высоких температур элементы носителя могут сохранять свою намагниченность в течение долгого времени (лет и десятилетий).

При считывании информации при движении магнитной головки над поверхностью носителя намагниченные участки носителя вызывают в ней импульсы тока (явление электромагнитной индукции). Последовательности таких импульсов передаются по магистрали в оперативную память компьютера.

Гибкие магнитные диски. Гибкие магнитные диски помещаются в пластмассовый корпус. Такой носитель информации называется дискетой. В центре дискеты имеется приспособление для захвата и обеспечения вращения диска внутри пластмассового корпуса. Дискета вставляется в дисковод, который вращает диск с постоянной угловой скоростью.

При этом магнитная головка дисковода устанавливается на определенную концентрическую дорожку диска, на которую и производится запись или с которой производится считывание информации. Информационная емкость дискеты невелика и составляет всего 1,44 Мбайт. Скорость записи и считывания информации также мала (составляет всего около 50 Кбайт/с) из-за медленного вращения диска (360 об. /мин).

В целях сохранения информации гибкие магнитные диски необходимо предохранять от воздействия сильных магнитных полей и нагревания, так как такие физические воздействия могут привести к размагничиванию носителя и потере информации.

Жесткие магнитные диски. Жесткий магнитный диск представляет собой несколько десятков дисков, размещенных на одной оси, заключенных в металлический корпус и вращающихся с большой угловой скоростью (рис. 4.6).

За счет гораздо большего количества дорожек на каждой стороне дисков и большого количества дисков информационная емкость жесткого диска может в сотни тысяч раз превышать информационную емкость дискеты и достигать 150 Гбайт. Скорость записи и считывания информации с жестких дисков достаточно велика (может достигать 133 Мбайт/с) за счет быстрого вращения дисков (до 7200 об./мин).

Рис. 4.6. Жесткий магнитный диск

В жестких дисках используются достаточно хрупкие и миниатюрные элементы (пластины носителей, магнитные головки и пр.), поэтому в целях сохранения информации и работоспособности жесткие диски необходимо оберегать от ударов и резких изменений пространственной ориентации в процессе работы.

Оптический принцип записи и считывания информации. В лазерных дисководах CD-ROM и DVD-ROM используется оптический принцип записи и считывания информации.

В процессе записи информации на лазерные диски для создания участков поверхности с различными коэффициентами отражения применяются различные технологии: от простой штамповки до изменения отражающей способности участков поверхности диска с помощью мощного лазера. Информация на лазерном диске записывается на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью.

При соблюдении правил хранения (в футлярах в вертикальном положении) и эксплуатации (без нанесения царапин и загрязнений) оптические носители могут сохранять информацию в течение десятков лет.

В процессе считывания информации с лазерных дисков луч лазера, установленного в дисководе, падает на поверхность вращающегося диска и отражается. Так как поверхность лазерного диска имеет участки с различными коэффициентами отражения, то отраженный луч также меняет свою интенсивность (логические 0 или 1). Затем отраженные световые импульсы преобразуются с помощью фотоэлементов в электрические импульсы и по магистрали передаются в оперативную память.

Лазерные дисководы и диски. Лазерные дисководы (CD-ROM и DVD-ROM - рис. 4.7) используют оптический принцип чтения информации.

На лазерных CD-ROM (CD - Compact Disk, компакт-диск) и DVD-ROM (DVD - Digital Video Disk, цифровой видеодиск) дисках хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна, что отражено во второй части их названий: ROM (Read Only Memory - только чтение). Производятся такие диски путем штамповки и имеют серебристый цвет.

Информационная емкость CD-ROM диска может достигать 650 Мбайт, а скорость считывания информации в CD-ROM-накопителе зависит от скорости вращения диска. Первые CD-ROM-накопители были односкоростными и обеспечивали скорость считывания информации 150 Кбайт/с. В настоящее время широкое распространение получили 52-скоростные CD-ROM-накопители, которые обеспечивают в 52 раза большую скорость считывания информации (до 7,8 Мбайт/с).

DVD-диски имеют гораздо большую информационную емкость (до 17 Гбайт) по сравнению CD-дисками. Во-первых, используются лазеры с меньшей длиной волны, что позволяет размещать оптические дорожки более плотно. Во-вторых, информация на DVD-дисках может быть записана на двух сторонах, причем в два слоя на одной стороне.

Рис. 4.7. CD-ROM и DVD-ROM

Первое поколение DVD-ROM-накопителей обеспечивало скорость считывания информации примерно 1,3 Мбайт/с. В настоящее время 16-скоростные DVD-ROM-дисководы достигают скорости считывания до 21 Мбайт/с.

Существуют CD-R и DVD-R-диски (R - recordable, записываемый), которые имеют золотистый цвет. Информация на такие диски может быть записана, но только один раз. На дисках CD-RW и DVD-RW (RW - ReWntable, перезаписываемый), которые имеют "платиновый" оттенок, информация может быть записана многократно.

Для записи и перезаписи на диски используются специальные CD-RW и DVD-RW-дисководы, которые обладают достаточно мощным лазером, позволяющим менять отражающую способность участков поверхности в процессе записи диска. Такие дисководы позволяют записывать и считывать информацию с дисков с различной скоростью. Например, маркировка CD-RW-дисковода "40x12x48" означает, что запись CD-R-дисков производится на 40-кратной скорости, запись CD-RW-дисков - на 12-кратной, а чтение - на 48-кратной скорости.

Flash-память. Flash-память - это энергонезависимый тип памяти, позволяющий записывать и хранить данные в микросхемах. Карты flash-памяти (рис. 1.8) не имеют в своем составе движущихся частей, что обеспечивает высокую сохранность данных при их использовании в мобильных устройствах (портативных компьютерах, цифровых камерах и др.).


Рис. 4.8. Карты flash-памяти

Flash-память представляет собой микросхему, помещенную в миниатюрный плоский корпус. Для считывания или записи информации карта памяти вставляется в специальные накопители, встроенные в мобильные устройства или подключаемые к компьютеру через USB-порт. Информационная емкость карт памяти может достигать 512 Мбайт.

К недостаткам flash-памяти следует отнести то, что не существует единого стандарта и различные производители изготавливают несовместимые друг с другом по размерам и электрическим параметрам карты памяти.

Вопросы для размышления

1. Каковы основные правила хранения и эксплуатации различных типов носителей информации?

Практические задания

4.4. Составить сравнительную таблицу основных параметров устройств хранения информации (емкость, скорость обмена, надежность хранения информации, цена хранения одного мегабайта).

Долговременная память – хранилище информации с неограниченной емкостью и продолжительностью хранения. Компьютеры также являются достаточно объемными, долговременными хранилищами информации, но имеют свои сильные и слабые строны в этом плане. Проблема заключается не в количестве и сроке хранения, а в способе получения доступа к информации (см. таблицу).

Бывают ситуации, когда вы пытаетесь что-то вспомнить (имя, название и т.д.), слово буквально «вертится на языке», но вспомнить не удается. В памяти всплывают факты, названия, относящиеся к тому, что нужно вспомнить, но окончательно сформулировать информацию не удается. Вы можете «выудить» лишь часть, но не всю информацию. Удивительно, но если вы перестанете мучить себя, несколько секунд спустя она всплывет в вашей голове сама. Долговременная память очень сложна, и информация кодируется в сложной системе связи. Восстановив некоторые составляющие информации, вы воспроизводите какие-то связи в сети и через некоторое время можете получить все нужные данные.

С точки зрения дизайна интерес представляют два вопроса:

■ При каких условиях информация попадает в ДВП?

■ Сколько «стоит» вспоминание?

Оба вопроса очень интересны с точки зрения обучения пользователей, второй вопрос, к тому же, интересен еще и с точки зрения улучшения способности пользователей сохранять навыки работы с системой в течение длительного времени (а это одна из основных характеристик хорошего интерфейса).

Внутрь ДВП. Сейчас считается (и это мнение вряд ли будет изменено в дальнейшем), что информация попадает в ДВП в трех случаях. Во-первых, при повторении , т. е. при зубрежке. Во-вторых, при глубокой семантической обработке . В-третьих, при наличии сильного эмоционального шока . Эмоциональный шок нас интересует слабо – не стоять же, в самом деле, за спиной у пользователя, стреляя время от времени из ружья, чтобы он волновался (тем более что после шока запоминание прерывается). Достаточно и повторения с обработкой.

С повторением всё просто. Чем больше повторений и чем меньше времени проходит между повторами, тем больше шансов, что информация будет запомнена. Для нас как «людей просто» это ясно и неинтересно, но зато с точки зрения дизайна интерфейса это наблюдение вызывает очень простую эвристику: если системой придется пользоваться часто, пользователи ей обучатся, деваться-то им некуда. Это очень утешительное наблюдение.

С семантической обработкой дела обстоят интереснее. Дело в том, что информация хранится в ДВП в сильно структурированном виде (например, похоже, что зрительные воспоминания на самом деле хранятся не в виде картинки, а как список объектов, находящихся в изображении, изображения же отдельных объектов хранятся отдельно). Так что для обращения к воспоминаниям мозг выполняет работу, сходную с поиском книги в библиотеке (только более сложную; попробуйте методом самонаблюдения вспомнить, например, всех своих одноклассников). Соответственно, когда человек вспоминает, он углубляется в свою память и находит всё больше признаков искомой информации. Но верно и обратное: чем больше человек думает о какой-либо информации, чем больше он соотносит её с другой информацией, уже находящейся в памяти, тем лучше он запомнит то, о чем думает (т. е. текущий стимул). Это тоже очень утешительное наблюдение: если пользователь долго мучается, стараясь понять, как работает система, он запомнит её надолго, если не навсегда.

Несколько помогает понять устройство механизма запоминания его антипод, а именно забывание. Современная наука утверждает, что забывание обусловлено одним из трех факторов (или всеми тремя), а именно затуханием, интерференцией и различием ситуаций. Самое простое объяснение имеет затухание: когда информация не используется долгое время, она забывается. Несколько сложнее с двумя оставшимися факторами.

Предполагается, что если сходной семантической обработке подверглись несколько фрагментов сходной информации, эти фрагменты перемешиваются в памяти, делая практически невозможным воспроизведение поврежденного фрагмента, т. е. фрагменты интерферируют друг с другом. Иначе обстоит дело с различием ситуаций. Предполагается, что для успешного воспоминания требуется соответствие признаков во время кодирования с признаками во время воспроизведения. Невозможно неслучайно вспомнить «то, не знаю что». Это всё равно как потерять книжную карточку в библиотеке – книга в целости и сохранности, но найти её нет никакой возможности.

Если серьезно, то повторение можно охарактеризовать как способ мощный, но ненадежный, поскольку трудно рассчитывать на повторение при нечастой работе с системой (существует множество систем, используемых редко или даже однократно). Семантическая же обработка есть способ мощный, но дорогой: без повода пользователи не будут задействовать свой разум, предоставить же им повод сложно. Лучше всего в качестве повода работает аналогия, неважно, как она представлена, как метафора интерфейса, или как эпитет в документации.

Цена вспоминания. Является общим местом, что обращение к ДВП стоит довольно дорого. Поспорить с этим невозможно, поскольку в утверждении содержится слово «довольно», обладающее крайне размытым значением.

На самом деле всё сложно. Разные понятия вспоминаются с разной скоростью, слова, например, вспоминаются быстрее цифр, а визуальные образы – быстрее слов. Очень сильно влияет объем выборки, т. е. вспомнить одно значение из десяти возможных получается быстрее, нежели из ста возможных. Наконец, частота вспоминания влияет на скорость вспоминания (т. е. на скорость вспоминания сильно влияет тренировка).

При проектировании интерфейса удобно пользоваться следующим правилом. Для обычных пользователей, у которых нет навыков извлечения из ДВП информации, присущей проектируемой системе, следует снижать нагрузку на ДВП; для опытных пользователей, у которых эти навыки сформировались, обращение к ДВП может быть более быстрым, нежели любой другой способ поиска информации.

Важно, однако, сознавать, что для опытных пользователей ДВП, будучи быстрым, не обязательно является предпочтительным. Например, если стоит задача снизить количество ошибок, меню будет более эффективно, чем, скажем, командная строка, поскольку оно не позволит отдать заведомо неправильную команду.

Существует стратегия для получения информации из памяти, как и стратегия, помогающая сохранять информацию в долговременной памяти. Мнемоника - это присоединение смысловых значений к запоминаемой информации (пример с номером телефона). Люди тренируют себя в запоминании очень большого объема информации, создавая внутренние визуальные «зацепки», которые помогают запомнить каждую часть информации по отдельности. При работе с этой информацией «зацепка» помогает восстановить каждый «кусок» информации и легко перемещаться между ними.

Поскольку обращение к долгосрочной памяти вызывает затруднения, компьютерные интерфейсы должны разрабатываться с учетом этого и по возможности оказывать помощь. Для работы с информацией существуют два главных метода: распознавание и восстановление в памяти.

Зачем заставлять пользователей вспоминать информацию, если они уже знают ее? Почему бы не дать перечень или меню данных и позволить распознавать их? Восстановление в памяти включает в себя попытки распознавания информации без всякой помощи. Распознавание подразумевает попытку вспомнить информацию, используя какую-либо связь (Сравнить: действие через меню и с помощью комбинации клавиш).

Проектирование пользовательского интерфейса базируется на знании того, как человек познает и воспринимает. Одна из наиболее важных задач интерфейса: уменьшить доверие пользователя к собственной памяти и использовать преимущества компьютера для поддержки человеческих слабостей.

Сильные стороны Слабые стороны
Люди - распознавание образов - переключение внимания - бесконечная емкость долговременной памяти - богатая многокодовая долговременная память - способность к обучению - краткосрочная память с малой емкостью - быстрая потеря данных из краткосрочной памяти - медленная обработка данных - ошибки - затрудненный доступ к долговременной памяти
Компьютеры - память с большой емкостью - долговременная память - высокая скорость обработки - обработка без ошибок - безотказный доступ к памяти - простое сравнение с эталоном - ограниченные способности к обучению - ограниченная емкость долгосрочной памяти - ограниченная интеграция данных

Человек хранит информацию в памяти. В компьютере информация хранится в оперативной (внутренней) памяти. ОЗУ (ОП или RAM) - оперативное запоминающее устройство (оперативная память), быстрая память, которая состоит из ячеек, имеющих свой адрес.

Для оперативной работы с данными, которые должны быть всегда под рукой, процессору необходима более быстродействующая память, чем жесткий диск. В принципе такая память уже встроена в нем самом – мы говорим о кэш-памяти. Но объем чрезвычайно мал – максимум 512 кб, а для работы с современными программами необходимы многие мегабайты.

Для этого и нужна компьютеру оперативная память – память с большой скоростью доступа. Хранить в ней информацию постоянно не получается – при отключении питания вся информация из оперативной памяти исчезает. Но для всякого рода промежуточных операций и вычислений – лучше не придумаешь!

Принципиальной особенностью ОЗУ является его способность хранить информацию только во время работы машины

Однако при включении компьютера вся информация из оперативной памяти стирается.

Возможности компьютера во многом зависят от объема оперативной памяти: чем больше объем памяти, тем большими возможностями по работе с информацией обладает компьютер.

Для долговременного хранения информации используется внешняя память. ВЗУ - (внешние запоминающие устройства) предназначены для постоянного хранения большого объема информации (программы, документы видеоклипы и т.д.). Устройство, которое обеспечивает запись/считывание информации, называется накопителем или дисководом, а хранится информация на носителях (например, дискетах).

В накопителях на гибких магнитных дисках (НГМД) и накопителях на жестких магнитных дисках (НЖМД) или “винчестерах” в основу записи, хранения и считывания информации положен магнитный принцип, а в лазерных дисководах CD-ROM и DVD-ROM - оптический принцип.

- накопители на гибких магнитных дисках (НГМД ) Гибкие магнитные диски помещаются в пластмассовый корпус. Такой носитель информации называется дискетой. Дискета вставляется в дисковод, который устанавливается в специальном отделении для дисковода системного блока. В настоящее время наиболее распространены дискеты формата 5,25 и 3,5 дюйма.

Наверное, уже каждый человек держал в руках эту небольшую 3,5-дюймовую плоскую прямоугольную вещицу, внутри которой находится полимерный диск (пленка) с нанесенным на него магнитным слоем защиты (от механических воздействий). При необходимости доступ к нему можно получить, отодвинув заграждающую его металлическую заслонку, которую находящаяся внутри дискеты пружинка стремится возвратить в первоначальное положение. В центре полимерного диска закреплена круглая металлическая деталь, которую легко увидеть с одной из сторон дискетки. Через эту деталь, двигатель дисковода передает диску из полимерной пленки вращение.


Благодаря своей простоте и дешевизне дискета получила невиданное распространение, и до недавнего времени дисководы для 3,5-дюймовых дискеток стояли почти в каждом персональном компьютере.

Общий объем дискеты составляет 1440 Кб.

ZIP, а точнее, Iomega ZIP – одна из очень популярных некоторое время назад магнитных накопителей. По своему устройству ZIP напоминает обычный дисковод для дискет 3,5 дюйма. На рынке присутствуют внутренние и внешние модификации этого накопителя с различными интерфейсами. Преимущество внешних накопителей – в возможности подключения практически к любому компьютеру, достоинство внутренних – в чуть большей скорости обмена. Объем ZIP-дискет может составлять 100 и 250 Мб.

Накопители на жестких магнитных дисках (НЖМД) или просто жесткий диск (винчестер) – предназначен для постоянного хранения информации, используемой при работе компьютера: операционной системы, документов, игр и т.д. Основными характеристиками жесткого диска являются его емкость, измеряемая в гигабайтах (Гб), скорость чтения данных, среднее время допуска, размер кэш – памяти. Находится внутри системного блока и его не видно. Отсеки для жестких дисков подобны отделениям для дисководов гибких дисков. Жесткий диск не разбирается, и магнитный носитель из него не удаляется. Следовательно, нет необходимости, чтобы жесткий диск выступал на передней панели. Даже когда жесткий диск устанавливается в отсек дисковода гибких дисков, его закрывают пластиковой панелькой.

Жесткие магнитные диски представляют собой несколько десятков дисков, размещенных на одной оси, заключенных в металлический корпус и вращающихся с большой скоростью.

Оптические накопители (CD-ROM и DVD-ROM) используют оптический принцип чтения информации. Информация на лазерном диске записана на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью.

Flash . Это относительно молодой тип памяти. Он основан на микросхемах, с которых информация не стирается при выключении питания. Эти носители информации внешне могут быть оформлены по-разному: как flash-карты, которые служат для записи информации в цифровых фотокамерах, и как внешние flash-накопители, подключаемые к компьютеру через USB-порт и отображающиеся в компьютере как отдельный логический диск.

Flash-карты используются для записи информации на них в различных устройствах – таких, как цифровые фотокамеры. Достоинство этих карт в том, что их можно менять (так же, как и фотопленки: сделал некоторое количество фотографий, заполнил память карты, заменил эту карту на другую и можно продолжать фотографировать).

Существует большое количество различных Flash-карт, которые отличаются друг от друга объемами запоминаемой информации (16-512 Мб), размерами и формой корпуса.

Flash-диски . Сравнительно молодой и очень перспективный вид носителей информации. Имея небольшие размеры, эти диски внешне напоминают короткий маркер или карандаш.

Выпускаются накопители объемом 8, 16, 32, 64, 128, 256, 512 Мб, 1 и 2 Гб.

Гибридные и твердотельные накопители. Гибридный жесткий диск (Hybrid Hard Drive, HHD) Фактически ННD представляет собой новый тип накопителя, объединяющий в себе модуль высокоскоростной флэш-памяти и традиционный винчестер с вращающимися магнитными пластинами. По замыслу создателей, встроенная в накопитель флэш-память, Благодаря такому №разделению труда» гибридный диск позволяет повысить скорость загрузки компьютера и как минимум вдвое снизить уровень энергопотребления (что особенно актуально для портативных ПК).

Современные компьютеры обладают принципом открытой архитектуры.

Принцип открытой архитектуры означает, что возможна лёгкая замена устаревших частей ЭВМ, новая деталь (блок) будет совместима со всем тем оборудованием, которое использовалось ранее.

Подключение компьютера к сети . Компьютер может обмениваться информацией (передавать и получать) с другими компьютерами с помощью локальных и глобальных компьютерных сетей. Для этого в его состав включают сетевую плату и модем . Возможность обмена данными между компьютерами по обычной телефонной связи обеспечивают модемы, факс-модемы

Модем (модулятор – демодулятор) устройство для передачи компьютерных данных на большие расстояния по телефонным линиям связи.

Цифровые сигналы, вырабатываемые компьютером, нельзя напрямую передавать по телефонной сети, потому что она предназначена для передачи человеческой речи – непрерывных сигналов звуковой частоты.

Модем обеспечивает преобразование цифровых сигналов компьютера в переменный ток частоты звукового диапазона – этот процесс называется модуляцией, а также обратное преобразование, которое называется демодуляцией. Отсюда название модем – модулятор/демодулятор.

Для осуществления связи один модем вызывает другой по номеру телефона, а тот отвечает на вызов. Затем модемы посылают друг другу сигналы, согласуй подходящий им обоим режим связи. После этого передающий модем начинает посылать моделированные данные с согласованными скоростью (количеством бит в минуту) и форматом. Модем на другом конце преобразует полученную информацию в цифровой вид и передает её своему компьютеру. Закончив сеанс связи, модем отключается от линии.

По своему внешнему виду и месту установки модемы подразделяются на внутренние (internal) и внешнее (external). Внутренние модемы представляют собой электронную плату, устанавливаемую непосредственно в компьютер, а внешние – автономное устройство, подсоединяемое к одному из портов. Внешний модем стоит дороже внутреннего того же типа из-за внешней привлекательности и более легкой установки. Основной параметр в работе модема – скорость передачи данных. Она измеряется бит в секунду. Также важными показателями в современных модемах является наличие режима коррекции ошибок и режима сжатия данных.

Первый режим обеспечивает дополнительные сигналы, посредством которых модемы осуществляют проверку данных на двух концах линии и отбрасывают немаркированную информацию, а второй сжимает информацию для более быстрой и четкой её передачи, а затем восстанавливает ее на получающем модеме. Оба эти режима заметно увеличивают скорость и чистоту передачи информации, особенно в российских телефонных линиях.

Магистраль . Обмен информацией между отдельными устройствами компьютера производится по магистрали , соединяющей все устройства компьютера.

Все выше перечисленное мы можем представить в виде общей схемы.

ОБЩАЯ СХЕМА ЭВМ (ПК)

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!